本文目录一览:
你们知道朱世杰吗?他是个怎么样的人啊?
朱世杰 (1300前后),朱世杰,字汉卿,号松庭,燕山(今北京)人氏。他长期从事数学研究和教育事业,以数学名家周游各地20多年,四方登门来学习的人很多。他的主要著作有《算学启蒙》三卷和《四元玉鉴》三卷。),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。 中国元代数学家,对多元高次方程组解法、高阶等差级数求和,高次内插法都有深入研究,他著有《算学启蒙》(1299年)、《四元玉鉴》(1303年)各3卷,在后者中讨论了多达四元的高次联立方程组解法,联系在一起的多项式的表达和运算以及消去法,已接近近世代数学,处于世界领先地位,他通晓高次招差法公式,比西方早四百年,中外数学史家都高度评价朱世杰和他的名著《四元玉鉴》. 朱世杰是元朝一位杰出的数学科学家。 13世纪末,历经战乱的祖国为元王朝所统一,遭到破坏的经济和文化又很快繁荣起来。蒙古统治者为了兴邦安国,便尊重知识,选拔人才,把各门科学推向新的高峰。 有一天,风景秀丽的扬州瘦西湖畔,来了一位教书先生,在寓所门前挂起一块招牌,上面用大字写着:“燕山朱松庭先生,专门教授四元术”。 不几天,朱世杰门前门庭若市,求知者络绎不绝,就在朱世杰在接待学生报名之时,突然一声声叫骂声引起他的注意。 只见一穿绸戴银半老徐娘,追着一年轻的姑娘,边打边骂:“你这贱女人,大把的银子你不抓,难道想做大家闺秀,只怕你投错了胎,下辈子也别想了。” 那姑娘被打得皮开肉绽,连内身衣服都被撕坏了。姑娘蜷成一团,任凭她打,也不跟她回去。 朱世杰路见不平,便上前询问,那半老徐娘见冒出一个爱管闲事之人,就嘲笑道:“你难道想抱打不平,你送上50两银子,这姑娘就归你了!” 朱世杰见此情景,大怒道:“难道我掏不出50两银子。光天化日之下,竟胡作非为,难道没有王法不成?” 那半老徐娘讽刺道:“你这穷鬼,还谈什么王法,银子就是王法,你若能掏出50两银子,我便不打了。” 朱世杰愤怒已极,从口袋里抓出50两银子,摔在半老徐娘面前,拉起姑娘就回到自己的教书之地。 原来,那半老徐娘是妓女院的鸨母,而这姑娘的父亲因借鸨母的10两银子,由于天灾,还不起银子,只好卖女儿抵债。今天碰巧遇上朱世杰,才把姑娘救出苦海。 后来,在朱世杰的精心教导下,这姑娘也颇懂些数学知识,成了朱世杰的得力助手,不几年,两人便结成夫妻。 所以,扬州民间至今还流传着这样一句话: 元朝朱汉卿, 教书又育人。 救人出苦海, 婚姻大事成。 上面这段佳话是不是事实,已不好考证,但说明了朱世杰在做学问的同时,还有着一颗慈爱的心。 再说朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向更高的境界,形成宋元时期中国数学的最高峰。 《算学启蒙》是朱世杰在元成宗大德三年(1299)刊印的,全书共三卷,20门,总计259个问题和相应的解答。 这部书从乘除运算起,一直讲到当时数学发展的最高成就“天元术”,全面介绍了当时数学所包含的各方面内容。 它的体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜、日本等国,出版过翻刻本和注释本,产生过一定的影响。 而《四元玉鉴》更是一部成就辉煌的数学名著。它受到近代数学史研究者的高度评价,认为是中国古代数学科学著作中最重要的、最有贡献的一部数学名著。 《四元玉鉴》成书于大德七年(1303),共三卷,24门,288问,介绍了朱世杰在多元高次方程组的解法——四元术,以及高阶等差级数的计算——垛积术、招差术等方面的研究和成果。 “天元术”是设“天元为某某”,即某某为x。但当未知数不止一个的时候,除设未知数天元(x)外,还需设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联方程组,然后求解。 这在欧洲,解联立一次方程开始于16世纪,关于多元高次联立方程的研究还是18至19世纪的事了。 朱世杰的另一重大贡献是对于“垛积术”的研究。他对于一系列新的垛形的级数求和问题作了研究,从中归纳为“三角垛”的公式,实际上得到了这一类任意高阶等差级数求和问题的系统、普遍的解法。 朱世杰还把三角垛公式引用到“招差术”中,指出招差公式中的系数恰好依次是各三角垛的积,这样就得到了包含有四次差的招差公式。 他还把这个招差公式推广为包含任意高次差的招差公式,这在世界数学史上是第一次,比欧洲牛顿的同样成就要早近4个世纪。 正因为如此,朱世杰和他的著作《四元玉鉴》才享有巨大的国际声誉。近代日本、法国、美国、比利时以及亚、欧、美许多国家都有人向本国介绍《四元玉鉴》。 美国已故的著名的科学史家萨顿是这样评说朱世杰的: “(朱世杰)是中华民族的、他所生活的时代的、同时也是贯穿古今的一位最杰出的数学科学家。” “《四元玉鉴》是中国数学著作中最重要的,同时也是中世纪最杰出的数学著作之一。它是世界数学宝库中不可多得的瑰宝。” 从此中可以看出,宋元时期的科学家及其著作,在世界数学史上起到了不可估量的作用。 除了以上成就外,朱世杰还在他的著作中提出了许多值得注意的内容: 1.在中国数学史上,他第一次正式提出了正负数乘法的正确法则; 2.他对球体表面积的计算问题作了探讨,这是我国古代数学典籍中唯一的一次讨论。结论虽不正确,但创新精神是可贵的; 3.在《算学启蒙》中,他记载了完整的“九归除法”口诀,和现在流传的珠算归除口诀几乎完全一致。 总之,朱世杰继承和发展了前人的数学成就,为推进我国古代数学科学的发展做出了不可磨灭的贡献。朱世杰不愧是我国乃至世界数学史上负有盛名的数学家。 由于朱世杰和其他同时代数学家的共同努力,使宋元时期的数学达到了光辉的高度,在很多方面都居于世界前列。 自朱世杰之后,我国这种在数学上高度发展的局面不但没有保持发展下去,反而很多成就在明、清一段时期内失传。这实在是科学史上的一件憾事。 “燕山朱松庭先生”,是元朝时代的一位杰出的数学家。所写的《四元玉鉴》和《算学启蒙》,是我国古代数学发展进程中的一个重要的里程碑,是我国古代数学的一份宝贵的遗产。 朱世杰的青少年时代,正相当于蒙古军灭金之后。但在灭金之前,中都(即今之北京)便于1215年被成吉思汗攻占。 元世祖忽必烈继汗位之后,于1264年(至1266年)为便于统治中原地区的人民,迁都燕京(后改称大都,亦即今之北京)到了13世纪60年代燕京不只是全国的政治中心,而且也是当时全国重要的文化中心,特别是北方的一个文化中心。 忽必烈为了元朝的统治,曾网罗了一大批汉族的知识分子充作智囊团。其中就著名的有王恂(1235—1281)、郭守敬(1231—1279)、李冶(1192—1279)等人,这个智囊团中的人物,对数学和历法都很精通,他们未入朝前曾隐于河北省南部武安紫金山中。 13世纪中叶,在现在的河北省的南部地区和山西省的南部地区,出现了一个以天元术为其代表的数学研究中心。除上述武安的紫金山和李冶元氏封龙山外,山西临汾的蒋周,河北蠡县的李文一,河北获鹿的石信道等人都在研究天元术。朱世杰也继承了北方数学的主要成就——天元术,并将其由二元、三元推广至四元方程组的解法。 朱世杰除了接受北方的数学成就之外,他也吸收了南方的数学成就,尤其是各种日用算法、商用算术和通俗化的歌诀等等。 在元灭南宋以前,南北之间的交往,特别是学术上的交往几乎是断绝的。南方的数学家对北方的天元术毫无所知,而北方的数学家也很少受到南方的影响。朱世杰曾“周游四方”,莫若(古代数学家)序中有“燕山松庭朱先生以数学名家周游湖海二十余年矣。四方之来学者日众,先生遂发明《九章》之妙,以淑后图学,为书三卷……名曰《四元玉鉴》”,祖颐后序中亦有“汉卿名世杰,松庭其自号也。周流四方,复游广陵,踵门而学者云集”。经过长期的游学、讲学等活动,终于在1299年和1303年,在扬州,刊刻了他的两部数学杰作——《算学启蒙》和《四元玉鉴》。杨辉书中的归除歌诀在朱世杰所著《算学启蒙》中有了进一步的发展。 清罗士琳认为:“汉卿在宋元间,与秦道古(即秦九韶)、李仁卿可称鼎足而三。道古正负开方,汉卿天元如积皆足上下千古,汉卿又兼包众有,充类尽量,神而明之,尤超越乎秦、李之上”。清代数学家王鉴也说:“朱松庭先生兼秦、李之所长,成一家之著作”。朱世杰全面继承了并创造性地发扬了天元术、正负开方法等秦、李书中所载的数学成就之外,还囊括了杨辉书中的日用、商用、归除歌诀之类与当时社会生活密切相关的各种算法,并作了新的发展。 由此看来,在朱世杰的工作中,不仅有高次方程的解法,天元术等为代表的北方数学的成就,也包括了杨辉工作中所体现出来的日用,商用算法以及各种歌诀等南方数学的成就,不仅继承了中国古代数学的光辉遗产,而且又作了创作性的发展。朱世杰的工作,在一定意义上讲,可以看作是宋元数学的代表,可以看作是古代筹算系统发展的顶峰。就连西方资产阶级学者们也不能否认这一点,乔治·萨顿说:朱世杰“是汉族的,他所生存的时代的,同时也是贯穿古今的一位最杰出的数学家”,说《四元玉鉴》“是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一”。朱世杰以他自己的杰出著作,把中国古代数学推向更高的境界,为中国古代数学的光辉史册,增加了新的篇章,形成了宋代中国数学发展的最高峰。
方程式的发展历史
一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。
十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。
十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。
十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。
十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。
1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。
1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。
1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。
1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。
1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。
1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。
十四世纪中叶前,中国开始应用珠算盘。
1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。
人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大。
结绳:最古的记数方法,传为伏羲所创。
书器:一种最古的记数工具,传为隶首所创。
河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。
八卦:传为周公所创,是最初的二进制法。
规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。
几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。
九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。
技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。
数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。
中国最著名的科学家有哪些?
中国最著名的科学家有袁隆平、竺可桢、钱伟长、侯德榜、童第周等。
1、袁隆平,1930年9月生于北京,江西省九江市德安县人,中国杂交水稻育种专家,中国研究与发展杂交水稻的开创者,被誉为“世界杂交水稻之父”。袁隆平是杂交水稻研究领域的开创者和带头人,致力于杂交水稻的研究,先后成功研发出“三系法”杂交
水稻、“两系法”杂交水稻、超级杂交稻一期、二期。
2、竺可桢(1890.3.7-1974.2.7),字藕舫,浙江省绍兴县东关镇(今属浙江省绍兴市上虞区)人。中国科学院院士,中国近代气象学家、地理学家、教育家。中国近代地理学和气象学的奠基者。他对中国气候的形成、特点、区划及变迁等,对地理学和自然科学史都有深刻的研究。
3、钱伟长(1912.10.9—2010.7.30),江苏无锡人,世界著名的科学家、教育家,杰出的社会活动家,中国科学院院士。钱伟长兼长应用数学、力学、物理学、中文信息学,在弹性力学、变分原理、摄动方法等领域有重要成就。
4、侯德榜(1890年8月9日~1974年8月26日),生于福建闽侯,著名科学家,杰出化学家,侯氏制碱法的创始人,中国重化学工业的开拓者。近代化学工业的奠基人之一,是世界制碱业的权威。
5、童第周(1902.5.28-1979.3.30),浙江鄞县(今宁波市鄞州区)人,生物学家、教育家、社会活动家,中国实验胚胎学的主要创始人,中国海洋科学研究的奠基人,生物科学研究的杰出领导者,开创了中国“克隆”技术之先河,被誉为“中国克隆之父”。
扩展资料
成为科学家的一个标志是首先是一个独立的研究者,也就是说一个科学家必需有参与科学研究,发表,交流等活动的自主性。这种自主性是和成果挂钩的,说白了所谓的成果无非就是发表文章或获得专利权。
这对于一位以科学研究为职业的科学家是至关重要的。在过去我们总强调科学家应该首先具备科学精神,也就是你如果想以科学发现为职业,就必须从精神上有一种献身,求实,严谨和持之以恒的内质,这就是所谓的科学精神
。随着科学研究成了一种社会建制,特别是当现代科学活动出现了政府主导的特征之后,科学就一下子从”小科学“变成了“大科学”,科学也随之变成了一种职业。
参考资料来源:百度百科-科学家
中外著名数学家有哪些?(详细介绍)
墨子(前480-前400年),墨子对中国数学史的贡献是杰出的,本文通过对《墨经》有关数学条目的研究,从而阐明墨子的数学思想。这对促进民族科学的复兴具有借鉴作用。
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
祖暅,祖冲之的儿子。受家庭的影响,尤其是父亲的影响,他从小就热爱科学,对数学具有特别浓厚的兴趣,祖冲之在462年编制《大明历》就是在祖暅三次建议的基础上完成的。《缀术》一书经学者们考证,有些条目就是祖暅所作。祖暅终生读书专心致志,因走路时思考问题所以闹出了许多笑话。祖暅原理是关于球体体积的计算方法,这是祖暅一生最有代表性的发现。
刘徽,中国魏晋间伟大的数学家,中国古典数学理论的奠基者之一.刘徽公元263年注《 九章算术》.他全面证明了《九章算术》的方法和公式,指出并纠正了其中的错误,在数 学方法和数学理论上作出了杰出的贡献.刘徽创造性的运用极限思想证明了圆面积公式及提出了计算圆周率的方法。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形…… ,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少, 割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值.刘徽提出的计 算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位。
贾宪,11世纪中国北宋数学家,创造"开方作法本源"即贾宪三角,并提出以贾宪三角为立成的完整的开方法一立成释锁法,它标志着贾宪已把传统开方法推广到开任意高次方;创造增乘开方法,这是一种更加简捷,程序化更为强烈的开方法.这两项成果后来在阿拉伯地区也都出现过;而在欧洲、前者出现在17世纪、被称作帕斯卡三角,后者则在19世纪初才被重新提出,被称作鲁菲尼一霍纳法或霍纳法,都比贾宪晚几百年.
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶,原名李治,我国金元期间人,是我国13世纪杰出的数学家。他和秦九韶、杨辉、朱世杰是有名的宋元四大数学家。
李冶毕生致力于数学研究,对中国古代数学的发展做出了卓越的贡献。他著有数学名著《测圆海境》和《益古演段》,里面记载了许多具有世界意义的学术成就。李冶最大的成就就是发展了天元术。以前,人们写代数式是用文字的,非常烦琐,直到16世纪,由法国数学家韦达提出用字母代数,才结束了用文字代数的历史,因此西方数学史上称韦达为“代数学之父”。但是早在韦达几百年前我国就建立了半符号数学——天元术。13世纪李冶总结了前人的经验,并加以简化,使天元术向前发展了一步。在天元术里,李冶解决了列方程问题,研究了高次方程的解法,同时还创造了当时世界上最先进的小数记法,这比比利时的斯台文早了300多年,而且斯台文的记法远不如李冶的记法简单。除此之外,李冶还总结了勾股容圆的问题,即在各种条件下求直角三角形的内切圆,旁切圆等。李冶能够运用代数法解决几何问题,又善于把数学问题通过图形直观地进行解决,这在17世纪笛卡尔发明解析几何学之前,在世界上是最先进的,真不愧是我们民族的脊梁,华夏的骄傲。
杨辉,杨辉是中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
朱世杰,朱世杰是中国数学黄金时代(宋元时期)最后的且是最伟大的数学家。史家总是描述他是所有时期伟大的数学家之一。然而,朱世杰的生平少有人知,就连他生日和祭日的确切资料也没人知道。他住在现今北平附近的燕山。他曾”以数学名家周游湖海二十余年,四方之来学者日众”,说明他以数学研究和数学教学为业游学四方。他的两本最重要的数学著作是算学启蒙,共3卷259问,成书于公元1299年,是一部当时较好的教科书;而四元玉鉴,共3卷288问,写于公元1303年。在「玉鉴」中的四元术是天、地、人、物表示在单一的方程式中的四个未知数。算学启蒙曾流传到朝鲜、日本等国,在中国一度失传,直到1839年得到朝鲜翻刻本,才再重新翻印流传。朱世杰的著作深深地影响着亚洲数学的发展。四元玉鉴为中国代数发展达致巅峰。书中主要论及处理齐次方程组、巴斯卡三角形,以及解高次方程(如14次方程)。朱世杰解14次方程式的方法就是现在所周知的霍纳(Horner)方法(用19世纪的数学家霍纳之名)。虽然朱世杰似乎是第一个发表巴斯卡三角形和霍纳方法的数学家,但是他的名字并没有和他的发现齐名,但这并无损朱世杰在数学上所做出的重要贡献。
徐光启:公元1562-1633年,字子先、号玄扈、上海人,明代科学家。第一个把欧洲先进的科学知识,特别是天文学知识介绍到中国,可谓中国近代科学的先驱者。他学习西方传教士利玛窦带来的西方天文、历算、火器等,尽通其术。著有《崇祯历书》,对于中国古代历法的改革是一次飞跃性的突破,它奠定了中国近三百年历法的基础。另译著有西方的《几何原本》、《泰西水法》、《测量法义》、《测量异同》、《勾股义》等。对中国当时的数学、天文、历算、军事、测量、水利和农业等学科作出了重要贡献。
僧一行(683~727),唐代著名天文学家、高僧。本名张遂。武则天侄武三思想借重他的声誉,要与他结交,他拒绝了,隐入嵩山,削发为僧,一行是他的法名。唐玄宗时礼迎他至长安,向他求教治国之道。721年,玄宗下诏让他修订历法。724~725年,他组织了全国13个点的天文大地测量。这次测量以天文学家南宫说等人在河南的工作最为重要。一行从南宫说等人测量的数据中,得出了北极高度相差一度,南北距离就相差351里80步(合现代129.22公里)的结论。这个数据就是地球子午线一度的弧长。这与现在计算北纬34°5地方子午线一度弧长111.2公里,仅差9公里多。唐朝测出子午线的长度,在当时的世界上还是第一次。
张邱建,北魏数学家,贝州清河人。 他从小聪明好学,酷爱算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程整数的典型问题,邱建对此有精湛和独到的见解。著有《张邱建算经》3卷。
郭守敬(1231~1316),中国元代的大天文学家、数学家、水利专家和仪器制造家。字若思,顺德邢台(今河北邢台)人。生于元太宗三年,卒于元仁宗延二年。
关于数学的小知识
1,零
在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。
2,数字系统
数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。
3,π
π是数学中最著名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。
π或者pi,是圆周的周长和它的直径的比值。它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。
4,代数
代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。这是正向思维。这些数,需要做的只是把它们加起来。
但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。
5,函数
莱昂哈德·欧拉是瑞士数学家和物理学家。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x),他是把微积分应用于物理学的先驱者之一。